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ABSTRACT

We present a new algorithm for solving two-stage stochas-
tic mixed-integer programs (SMIPs) having discrete first-
stage variables, and continuous or discrete second-stage vari-
ables. For a minimizing SMIP, the BEST algorithm (1) com-
putes an upper Bound on the optimal objective value (typ-
ically a probabilistic bound), and identifies a deterministic
lower-bounding function, (2) uses the bounds to Enumerate
a set of first-stage solutions that contains an optimal solution
with pre-specified confidence, (3) for each first-stage solu-
tion, Simulates second-stage operations by repeatedly sam-
pling random parameters and solving the resulting model
instances, and (4) applies statistical Tests (e.g., “screening
procedures”) to the simulated outcomes to identify a near-
optimal first-stage solution with pre-specified confidence.
We demonstrate the algorithm’s performance on a stochastic
facility-location problem.

1 INTRODUCTION

Stochastic mixed-integer programs (SMIP)s arise in varied
contexts such as industrial capacity planning (e.g., Stafford
1997, Ahmed, et al. 2000), vehicle routing or allocation (e.g.,
Frantzeskakis and Powell 1990, Morton and Kenyon 2001),
facility location (e.g., Laporte et al. 1994), and network in-
terdiction (Cormican et al. 1998, Israeli 1999). The common
thread is that, in the problems’s first stage, the user must make
discrete, resource-constrained decisions about the configura-
tion of a system, and in the second stage uncertainty resolves
itself and the user (“‘adversary” in the case of interdiction
problems) operates the configured system optimally. The
second-stage decision variables may be continuous or dis-
crete. This paper standardizes on a minimizing SMIP (e.g.,
minimizing cost).

Most of the literature on SMIPs focuses on solving prob-
lems for which all second-stage scenarios can be enumerated
(Klein Haneveld and van der Vlerk 1998, Ahmed 2004). Two
exceptions include sequential approximation (SA) (e.g., Kall
et al. 1988) and the sample average approximation method

(SAAM) (Maketal. 1999, Kleywegtetal. 2001). SA sequen-
tially improves lower and upper bounds by partitioning the
state space of the random parameters. Typically, SA solves
a lower-bounding problem defined across n ‘“‘conditional-
average scenarios,” and must increase n to refine the parti-
tion and tighten the bound. But, the computational workload
tends to increase superlinearly in n. SAAM solves similar,
n-scenario problems but with sampled scenario data. It too
must increase n for better accuracy, and therefore suffers
from the computational difficulities that SA exhibits. Both
methods may require specialized techniques to handle inte-
ger second-stage variables. Our goal is to develop an easy-to-
implement alternative to SA and SAAM that does not suffer
from their drawbacks.

We develop a fundamentally new algorithm for solving
SMIPs, and call it BEST: Bound, Enumerate, Simulate and
Test. BEST asks the user to preselect € > 0 and o > 0,
and then produces an e-optimal solution with a lower bound
on the confidence level of approximately 1 — «; hereafter we
refer to this bound as the “approximate confidence level.” For
most practical problems, the approximate confidence level is
likely to be conservative. Furthermore, BEST may produce
atruly optimal solution with an approximate confidence level
that is strictly greater than 1 — a.

In its basic form, BEST first computes a global upper
bound (typically probabilistic) on the SMIP’s optimal ob-
jective value z*. It also identifies a lower-bounding model
whose solution, for fixed first-stage variables, provides a re-
stricted lower bound on z*. BEST then applies these bounds
to enumerate a candidate set of first-stage solutions that, with
pre-specified confidence, contains at least one optimal solu-
tion. Typically, the candidate set is not a singleton, so BEST
proceeds by simulating second-stage operations for each can-
didate: A Monte Carlo simulation samples random second-
stage parameters, and solves the resulting optimization prob-
lems. The algorithm then applies a statistical test—we use
bootstrapping—to screen out solutions that are unlikely to be
optimal. If a single candidate remains, that solution can be
declared to be optimal with high confidence. Even if more
than a single candidate remains, a second test may enable
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us to declare the “apparent best solution,” i.e., the solution
having the smallest average objective value, to be e-optimal
with pre-specified confidence. If that test is not satisfied, the
method specifies a second round of simulation and testing
that makes such a declaration valid.

BEST places modest requirements on the types of SMIPs
it can solve. A deterministic lower bound must be available
as a function of the first-stage variables. And, the expected
cost of the SMIP, given a fixed first-stage solution, should
be reasonably easy to estimate using Monte Carlo simula-
tion. The SMIP should also incorporate “relatively complete
recourse,” defined below. Typically, we solve SMIPs with
linear constraints and linear objective functions, but “linear”
is not an inherent requirement. BEST does not require the
solution of any multi-scenario models as do SA and SAAM:
This is its key computational advantage.

We seek to make the statistical-testing portions of BEST
easily accessible the optimization community, so we pro-
pose a novel vector bootstrap approach to screen candidate
solutions. This eliminates the need for parametric character-
izations of the joint distribution of objective-function values
across candidate solutions (e.g., constant variance), and it
means that BEST can be implemented without specialized
statistical functions or tables. In fact, it can be implemented
entirely within an algebraic modeling system such as GAMS
(Brooke et al. 1992).

The rest of the paper is outlined as follows. “Preliminar-
ies,” Section 2, specifies the general formulation of SMIP
and describes the stochastic facility-location problem we use
throughout for illustrative purposes. Section 3 outlines the
BEST algorithm, and briefly describes the bounds, enumera-
tion mechanism, and statistical testing methods we use. Sec-
tion 4 presents computational results. Section 5 provides
conclusions and discusses directions for further research.

2 Preliminaries

2.1 The Stochastic Mixed-Integer Program (SMIP)

We wish to solve, at least approximately, a two-stage SMIP
with discrete first-stage variables

Xx € X={xeZ"Ax=b, 0 <x<u}, (1)
and with continuous or discrete second-stage variables
y € Y = {y € R’?| some y; may be integer}. )

Using tildes to identify random parameters, this SMIP is

SMIP mi)rclEh(x,é), where 3)
Xe
~ ~T
h =cT inf 4
(x,8) =¢ x+minfy “4)

o
+
o]}
»

st. Dy = (5)

and where & = Vec(f, D.,d,B). Typically, u = 1, i.e., all
first-stage variables are binary. We assume that, with prob-
ability one, the second-stage problem in y has a bounded,
feasible solution for any x € X. Thus, SMIP is a two-stage
stochastic program with relatively complete recourse (Rock-
afellar and Wets 1976).

We use a simple example of an SMIP throughout the pa-
per to illustrate the BEST approach, a single-product, ca-
pacitated stochastic facility-location problem (SFLP). Birge
and Louveaux (1997, pp. 57-59) and Laporte et al. (1994)
describe similar models:

Stochastic Facility-Location Problem (SFLP)

Indices:
t € I candidate facilities, e.g., warehouses
j € J customer zones

Inputs:
Ci deterministic cost to construct facility 7 ($)
b maximum number of facilities

u;  planned capacity of facility ¢ if built (tons)
fij  deterministic shipping cost from i to j ($/ton)
cij random demand in customer zone j (tons)

r;  penalty for unmet demand at j ($/ton)

Decision Variables:
T; 1 if facility ¢ is built; O otherwise (1st stage)
yi;  tons shipped from 7 to j (2nd stage)
v; tons unmet demand at zone j (2nd stage)

Formulation
z* = min  Eh(x,d)
x€{0,1}!7I
s.t. Zay < b, where (6)
iel
h(x,d) = Zcixi—k (7
iel
g S5 fin+ T
el jed jeJ
S.L. Zyij S U; L5 Viel (8)
jeJ
> i tu; = d; VieJ )
iel

In the first stage of SFLP, we choose which facilities to
construct, but in the face of uncertain future demands for
product. In the second stage, actual demands are realized
and the constructed facilities ship to meet those demands as
cheaply as possible. A penalty is paid for each unit of unmet
demand. For fixed x, the deterministic version of SFLP is a
transportation problem with elastic demand constraints.



Sanchez and Wood

3 The BEST Algorithm
BEST is based on this self-evident proposition:

Proposition 1 Suppose 2" and h'(x) are defined for SMIP
such that 2" > z* with confidence 1 — «,, and h'(x) <
Eh(x,€) forall x € X. Enumerate X = {x € X|h/(X) <
2"} and assume X # . Then, with confidence 1 — o, X
contains at least one optimal solution to SMIP. 1

Our methods for computing 2" will never give X = (), so we
can now provide a well-defined outline of BEST.

Algorithm BEST

Input: Data for an instance of SMIP; confidence values .,
as, and oy for bounding, initial testing (“screening”), and
final testing, respectively, all chosen so that 1 — (av, + as +
o) equals the desired overall confidence 1 — «; allowable
optimality gap € > 0; initial sample size ny.

Output: A solution X to SMIP that is optimal with with con-
fidence at least (1 — v, )(1 — ), or is e-optimal with con-
fidence at least (1 — vy, )(1 — as) (1 — o).

{
Call Bound to compute 2"/, an upper bound on z* hav-

ing confidence level 1 — av,;

Call Enumerate to find the initial candidate set of so-
lutions X = {x € X|W/(x) < 2”}. X contains an
optimal solution with confidence 1 — a,;

If X = {Xq1}, set € < a; < a; < 0 and go to End;

Call Simulate to generate samples é’n, n=1,...,n9
of £, and to evaluate h(X, £) for each sample and each
XeEX;

Call Testl with observations from Simulate to screen
out convincingly inferior solutions, leaving the selected
subset X* C X. X'* contains an optimal solution with
(approximate) confidence at least (1 — a,)(1 — a);

If X* = {f(m}, set € « ay < 0 and go to End,;

Call Test2 with parameter € > 0, input X'* and obser-
vations on X € X* from Simulate;

If Test2 returns n+ > 0, call Simulate with X* replac-
ing X and n™ replacing ng, but compute the apparent
best solution X[;) with respect to all nt + ng observa-
tions;

End: Print( im, “is an”, €,“-optimal solution with ap-
proximate confidence”, (1 — a,)(1 — ) (1 — an));

3.1 Bounds for SMIP

BEST requires a global upper bound on z*, and a lower-
bounding function on Eh(X, £) for any X € X. The number
of possibilities is large, and many are problem dependent, so
we only discuss a few options that apply to SFLP.

3.1.1 Upper Bounds

Specialized deterministic bounds could be used here, for
example, the Edmunson-Madansky bound (Edmunson
1956, Madansky 1959), or a bound based on dual restricted
recourse (Morton and Wood 1999). We would set o, = 0
if such a bound were used. However, the following, stan-
dard, probabilistic bound (e.g., Mak et al. 1999) applies to
most, if not all SMIPs, and is easily described and computed.

Procedure UpperBound

Input: Coefficients and distribution parameters that define
SMIP; sample size n,,; confidence parameter c,.

Output: A probabilistic upper bound on SMIP 2" > 2* hav-
ing confidence level 1 — a,.

{

Use a heuristic to identify a “good” first-stage solution
x to SMIP.

According to the distribution of é generate n, ran-
dom samples, &;,§,,...,&, . and evaluate h(X,&,)
for each;

Compute 2= % Z?;l h’(ﬁa éé) + tau,nu—ls/ VvV
where S is the sample variance estimator for h(X, é ) and
ta,,n.—1 18 the upper 1—a,, quantile of the ¢ distribution
with n,, — 1 degrees of freedom;

Return 2/;

The bound 2" is valid because Eh(x, £) > z* forevery X €
X. One heuristic that might be used to obtain an acceptable
x would simply solve the expected-value problem, which is
this deterministic MIP:

min h(x, E€). (10)
Or, we could solve an approximating problem with a mod-

est number of samples &,, £ = 1,...,n/, taken from the
distribution of £ (e.g., Mak et al. 1999):

1SN
){rg;g;;h(x,&)- (11)

This is also a deterministic MIP. Our computational examples
in Section 4 exploit the latter technique.
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3.1.2 Lower Bounds

Depending on where an SMIP’s random coefficients appear,
BEST may be able to use lower bounds based on Jensen’s in-
equality (e.g., Birge and Louveaux 1997, pg. 140) or dual re-
stricted recourse (Morton and Wood 1999). Because h(x, d)
for SFLP is convex in d, Jensen’s inequality applies:

Proposition 2 For SFLP, 1/(x) = h(x, Ed) < Eh(x,d). I

Thus, we can compute a lower bound on Eh(X, &), for any
X, by solving a single, deterministic, elastic transportation
problem with demands set at expected values.

The need for a good deterministic lower bound is, admit-
tedly, the most restrictive aspect of BEST. Later in the paper,
we discuss how to tighten the simple, deterministic bound
described above for SFLP. When simple bounds like this do
not apply, we conjecture that probabilistic lower-bounding
techniques will prove useful (Bayraksan and Morton 2006).

3.2 Enumerating Candidate Solutions

Enumerate in BEST requires that we identify all first-stage
solutions x to SMIP that satisfy h’(x) < z”. Given binary x,
the following procedure, which can be implemented easily in
an algebraic model system like GAMS (Brooke et al. 1992),
will accomplish the task.

Procedure Enumerate

Input: Deterministic or probabilistic global upper bound z”’
for SMIP; data to define the lower-bounding function h’(x);

Output: Candidate solution set X = {x € X|h/(x) < 2"};

{

X 0

Repeat{
Attempt to solve minye x h'(x) for X;
If this is infeasible or A/(X) > 2z, Return X;
X — XU{x}
Add a constraint to the description of X to elimi-
nate X but only X, e.g.,

doowm+ Y, (-wm)<|-1; (12)

iel|z;=1 i€I|#;=0

The problem minyex h/(X) is a sequentially restricted,
deterministic, integer program or mixed-integer program.
Clearly, Enumerate terminates finitely.

The reader will probably see that the minimizing problem
in Enumerate need not be solved exactly. In fact, much

computational effort can be saved by halting the optimiza-
tion as soon as it finds any X € X satisfying h/(x) < 2”.
Computational efficiency may also improve if equation (12)
can be replaced by a stronger constraint. For instance, if X
enforces a simple cardinality requirement, 17x = b, (12) can
be replaced by

'x < b-1. (13)

If any first-stage variable is a general, bounded integer,
it can be replaced with the standard expansion in terms of
binary variables (e.g., Owen and Mehrotra 2002), and the
enumeration technique described above then applies. We
mention a general, more computationally efficient procedure
in section 5.

3.3 Simulating Candidate Solutions

To estimate the performance of solutions X € X’ under uncer-
tainty, we use common random numbers (CRNs) to simulate
realizations of the random second-stage parameters, and then
solve the resulting optimization models to collect optimal ob-
jective values for statistical analysis. CRNs result in greater
efficiency for statistical comparisons when they induce pos-
itive correlation, and we expect such correlation for many
SMIPs. For example, a pattern of generally high demands in
SFLP is likely to result in high distribution costs and unmet
demand penalties for any set of constructed facilities.

Procedure Simulate

Input: Data to define SMIP; candidate solution set X having
confidence level 1 — «,,; initial sample size ng.

Output: Randomly generated objective-function data for
eachx € X.

{

According to the distribution of £, generate ng random
samples, £,, £ =1,...,no;

Evaluate zpp < h(f(k,éz) for all X;, € X and all /;

3.4 Testing Candidate Solutions

There are two steps to the testing phase. First, a screening
test, Testl, eliminates solutions from A" that are unlikely
to be optimal; we use bootstrapping here. The remaining
candidate solutions, the selected subset X* C X', will contain
an optimal solution with pre-specified confidence of at least
(1 — ay)(1 — as). Typically, |X*| is much smaller than |X'|,
and the algorithm can terminate immediately if |X*| = 1.
This type of screening procedure is known as subset selection
(e.g., Bechhofer et al. 1995). The second phase, Test2,
handles situations with |X*| > 1, and may be optional.
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Procedure Testl (Bootstrap Screen)

Input: Candidate solution set X created with confidence
1 — a,; objective-function samples zy, for all &, £ from Sim-
ulate; screening confidence parameter a; bootstrap sample
size B.

Output: Selected subset X* C X which contains an optimal
solution with approximate confidence level (1 —ay, ) (1 —as).

{
Initialize wy, — Ofork =1,..., K = |X|;

For each bootstrap replication b =1, ..., B,

{

Generate ng indices from {1,2,...,nq} with re-
placement. Call this set L;

Compute average, optimal objective values

NONENE _ .
Z Hn—ogzki, k=1,...,K; (14)

Update the tally for the “winning” solution:

K — argmin 25 wge — we +1; (15)
k=1,...,K

}

Let [1],]2], ..., [K] denote indices of candidate solu-
tions so that W) 2 Wig] = ... 2 W Then

* S S 1 ¢
X* — {X[l],...,X[s] | n—QZwk >1—ag,

Return X'*;

This bootstrapping approach preserves the correlation in-
duced by CRNs for greater efficiency. For X € X, Test2
provides a direct estimate of the confidence level associated
with declaring this solution to be “best.” Asymptotically in
ng, wi/ B must converge to 0 for any non-optimal solution,
to 1/m for any of m multiple optimal solutions, and hence
to 1 for a unique optimal solution, if one exists. (The nature
of SFLP makes a unique optimum highly likely.)

The selected subset X'* has random size that depends on the
underlying distribution of objective values. If a few solutions
dominate the others, then E|X*| will be small even if | X| is
large and we can use a modest value of ng: As in other
subset selection procedures, the most difficult situation from
a screening perspective occurs when multiple optima exist.
The size of X'* also depends on B, ng, and the confidence

level. B > 1000 is recommended for estimating percentiles.
We do not yet know how to choose ng a priori, but we note
that bootstrapping in other contexts can use sample sizes as
small as nine (Efron and Tibshirani 1993). Higher confidence
(i.e., lower ay) increases the expected size of X'*. For any
particular problem, increasing or decreasing o over limited
ranges may not alter the identification of solutions in A'*.
Thus, the procedure is conservative, i.e., actual confidence
level is typically higher than the nominal one.

Additional sampling in the Test2 phase may not be re-
quired, even if [X*| > 1. If estimated objective values for
all x € X* are sufficiently close, a simple test may allow
us to declare the apparent best solution to be e-optimal with
required confidence 1 — oy (assuming that X'* contains an op-
timal solution to begin with). Test2—we borrow “Procedure
KN from Kim and Nelson (2001)—uses the initial simu-
lated samples to determine whether such a declaration can be
made, or if additional sampling is required. In the latter case,
the procedure goes on to specify a bound on the number of
additional samples required so that, when the (possibly new)
apparent best solution is identified, we can validly declare it
to be e-optimal with confidence 1 — a;.

Procedure Test2 (Select)

Input: Selected subset X'*, |X*| > 1, having (approximate)
confidence level (1 — ay,)(1 — as); no objective-function
samples from Simulate for each X € X'*; testing confidence
parameter o ; optimality tolerance € > 0.

Output: The number of samples in addition to ng that
must be applied to each X € X™* to ensure that the appar-
ent best solution is e-optimal with (approximate) confidence
(1 —ay)(1 —ag)(l — ay).

{

Forall X, X € X*, k # k’, compute sample variances
for the pairwise difference using the initial ny samples:

1 & 2
Z (zke — zwre — (20 — 200))",

=1
a7

Sz./<—
kk TLO—].

and set S? « maxyzp S3p;

Compute

—2/(no—1)
B2 (ng —1) l(;?%) —1]; (18)

Compute the maximum, total sample size required:
N « |h%S?%/€%]; (19)

Return nt « max{N — ng,0};
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The Test2 procedure is less intuitive than the bootstrap
in Test1, but in contrast to many alternatives, it requires no
special tables or calculations. In general, N will be large if
|X*| is large, if the (positive) correlation induced by CRNs
is low, or if € is small. As in Kim and Nelson, we reuse
the initial data, but note that the estimated savings in the total
number of samples can be substantial even without this reuse.

4 COMPUTATIONAL RESULTS

To demonstrate BEST’s empirical performance, we ran-
domly generate 15 SFLP test problems with different char-
acteristics, solve them using BEST, and present results in
Table 1. These problems vary by number of customer zones
and number of potential facilities. Customers and poten-
tial facilities are randomly scattered across a rectangle with
aspect ratio 1:3. Each shipping cost is proportional to the
Euclidean distances a shipment must travel. Deterministic
facility-construction costs, facility capacities, and penalties
for unmet demand are provided as inputs, as are expected
demands p; in each customer zone j. The actual demand
in zone j € J is modeled as Unif(u; — S, it + Bu;) for
6 = 0.1,0.2,0.4. We use o, = a5 = ay = .025 for all
problems, and desire a solution within 5% of the optimum.
Upper bounds z” are computed in Bound using n,, = 100
samples applied to a heuristic solution X computed by solv-
ing (11) with n’ = 20. We desire a relative optimality gap
of 5%, so we set € = 0.052" = 0.05 minge x h'(x);

As anticipated, the results obtained using CRNs are highly
correlated. The average pairwise correlations (not shown)
range from a low of 0.8706 (for problem 13) to a high of
0.9995 (for problem 1).

The easiest problems are clearly those with smaller vari-
ability in the average demand. Indeed, Bound and Enu-
merate yield only a few candidate solutions when § = 0.1.
But, even in instances with many candidate solutions, Test1
eliminates all but a handful of these. Eight of the 15 prob-
lems are solved completely after Testl, and only one of
the remaining problems has more than two candidate so-
Iutions. The estimated maximum relative gap for X, de-
noted Apax, is displayed in the table, and is defined as
Zmax = MaXx, x, €X* k#*k’ (Zk - zk')/zl' This may be
viewed as a conservative point estimate of the true relative
gap associated with the apparent best solution, and may there-
fore compared directly to the desired maximum gap of 0.05
(i.e., 5%).

Column 11 of Table 1 provides the upper bound, computed
from (19), on the additional sampling required if the initial
data are reused; only problem 15 requires further simula-
tion and testing. (The value of n will tend to increase as
| X*| increases, irrespective of .S, and we note that the largest

|X*| occurs for problem 15. However, n™ is positive here
primarily because S is large.) Column 12 shows the total
time required for the Bound, Enumerate, and initial Simulate
(BES) steps, and Column 13 shows the total times required
to run the bootstrap screening test Test1.

4.1 Improved Lower Bounds

A tighter lower-bounding function A'(x) for BEST may lead
to a reduced initial candidate set X and therefore reduced
computational workload. The ideas of sequential approx-
imation (SA) can help here. Applied to SFLP, SA would
partition the state space of the random demand vector into
Q regions Dy, ¢ = 1,...,Q, compute conditional expecta-
tions for each element, d, = E[d|d € D,], and solve the
lower-bounding problem

Q

}rcréigh’Q(x) = géi%zgp{debq}h(x,aq). (20)
=

The value of hg,(x) will approach h(x) from below if the
partition is refined and enlarged appropriately, i.e., as () in-
creases. These optimization problems resemble (-scenario
stochastic programs, which, of course, become more difficult
to solve as () increases.

BEST does not need an asymptotically convergent lower
bound, but a tighter one may be useful. We find that
substantially tighter bounds can accrue at modest compu-
tational cost by computing and exploiting a simple parti-
tion based on quartiles of total demand. In particular, for
0=Dg < Dy <Dy < D3 < Dy = 00, we define

Dy = {d[Dg-1 <Y d; <Dg}, qg=1,...,4, (21)
jeJ

and then compute D1, D5 and Dj so that P{a €D,} =0.25
forg = 1,...,4. Defining d,, ¢ = 1,...,4, as indicated
above, and solving (20) gives the new lower-bounding func-
tion.

We will not present detailed results, but summarize the ef-
fect of using the improved bound on the most difficult prob-
lems, problems 6, 9, 12 and 15: Computational workload
for the improved bound increases by at most a factor of two,
but |X'| is reduced by at least an order of magnitude, so the
computational time for the “BES steps” of BEST on each of
these problems reduces to at most 20% of the original.

4.2 Reduced Simulation Sampling

The results in Table 1 have been produced using an arbitrarily
chosen ng = 50 samples. But, bootstrap applications often
involve only 10-20 samples (Efron and Tibshirani 1993). Ac-
cordingly, we now explore BEST’s behavior for ny = 20 by
rerunning Test1 using the first 20 samples produced by Sim-
ulate for each X € X. Problems 4, 8, and 15 each add one
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Table 1: Computational Results for Stochastic Facility Location Problems

Max Computing
Sites Zones Facil. Bounds Times' (secs)
Problem | |I] | ] b g 2 2" X | |X*] Apax 0T BES  Testl
1 10 20 5 1| 7847  801.9 2 1 0 0 15.6 1.3
2 2 840.0 5 1 0 0 17.4 4.5
3 4 939.7 28 1 0 0 29.7 30.5
4 16 40 8 .1 | 8734 8782 2 1 0 0 192.5 1.3
5 2 916.7 13 2 0.014 0 111.3 13.2
6 4 1029.0 173 2 0.028 0 423.6 200.0
7 16 40 9 .1 | 8343 856.0 8 2 0.007 0 85.3 7.7
8 2 885.1 13 1 0 0 78.9 13.3
9 4 1016.8 150 2 0.015 0 324.2 168.5
10 18 30 10 1| 5182 5231 2 1 0 0 22.1 1.3
11 2 563.4 16 1 0 0 37.3 16.5
12 4 687.8 566 2 0.020 0| 22964 761.7
13 20 50 10 119588  966.2 3 2 0.001 0 132.8 1.1
14 2 1006.3 72 1 0 0 255.3 74.7
15 4 1155.1 1201 5 0.021 127 | 27458.1 1673.3

TBES, i.e., Bound, Enumerate and Simulate, from a 1GHz Pentium IIT computer operating under Windows 2000,
Testl from a 1.5GHz Apple PowerPC G4 operating under Mac OSX.

solution to the original set X'*, problem 14 yields two, and no
changes appear for the others. Test2 then requires additional
sampling for five problems, but the total number required is
less than 45% of the original in all cases. The results suggest
that the total number of simulated samples could be reduced
by over 50% while sacrificing little in accuracy.

4.3 Simplified Testing

A few alternatives exist do exist for Testl and/or Test2. For
example, Nelson and Matejcik (1995) describe a screening
procedure that uses CRNs, which could be used in lieu of
Testl; see also Nelson et al. 2001. However, we would
prefer to replace Test2 with a simpler bootstrap procedure,
or combine Testl and Test2 into a single, simple bootstrap
procedure.

5 CONCLUSIONS AND FUTURE WORK

We have presented a new method for solving two-stage
stochastic mixed-integer programs (SMIPs); first-stage vari-
ables must be discrete, but no conditions are placed on
second-stage variables. The BEST algorithm (Bound, Enu-
merate, Simulate and Test) first uses bounding information
to enumerate a candidate set of (first-stage) solutions that
contains an optimal solution with high confidence. It then
simulates the behavior of each candidate solution by sam-
pling random second-stage parameters and solving the result-
ing, simple, deterministic problems. Next, it uses statistical
tests—we apply bootstrapping—to screen out solutions that

are unlikely to be optimal. If the screened candidate set con-
tains a single element, the algorithm terminates. Otherwise,
additional sampling and testing may be applied to select a
single solution that is e-optimal with high confidence.

Much work remains to make BEST better. We currently
enumerate candidate solutions by solving a sequence of in-
creasingly restricted MIPs. A procedure much like branch
and bound would perform this more efficiently. The need for
a deterministic lower-bounding function in the enumeration
step limits BEST’s applicability, so a probabilistic alterna-
tive could prove useful. The bootstrapping screening test
proves highly effective and is simple to implement. But,
if that screening does not yield a single candidate solution,
our follow-on test is more complicated: Future research will
investigate simpler alternatives.
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